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Despite the fact that more than 2000 cisplatin analogs 
have been produced1 since the discovery of the anticancer 
activity of cisplatin by Rosenberg,2 there is still an urgent 
need for new platinum complexes that will combat intrinsic 
and acquired drug resistance and that will reduce the toxic 
side effects and morbidity of cisplatin and carboplatin 
chemotherapy.3 We have succeeded in creating an un­
precedented class of water-soluble multi(platinum) com­
plexes from sucrose-based ligands with marked in vivo 
anticancer activities. Since anticancer activities for com­
plexes containing one and two platinum centers are 
known,4'5 and since some monosaccharide complexes have 
shown anticancer activities,6 we sought to prepare com­
plexes containing one, two, and three platinum centers 
bound to sucrose-derived ligands and explore their bio­
logical activities. We prepared mono(platinum) complexes 
3 from 6,6'-diamino-6,6'-dideoxy-l',2,3,3',4,4'-hexa-0-me-
thylsucrose (2),7 bis(platinum) complex 5 from the rigid 
6,6'-diamino-6,6'-dideoxy-l',2-anhydrosucrose (4), and 
tris(platinum) complexes 7 from l',6,6'-triamino-l',6,6'-
trideoxy-2,3,3',4,4'-penta-0-methylsucrose (6) (see Scheme 
I). Our intent was to create sucrose-based cisplatin analogs 
that may have greater water solubility and less general 
systemic toxicity than cisplatin, be able to transport more 
than one platinum complex per molecule of sucrose to the 
tumor cell, and be able to bind both strands of DNA, so 
that replication of tumor cells resistant to cisplatin and 
carboplatin may be effectively arrested.3'4 Herein we 
report the syntheses, spectroscopic characterizations, and 
anticancer activities of these first platinum complexes from 
sucrose. 

The diamine 27 (4.41 mmol in 10 mL of water) was 
converted to the mono(platinum) complex 3a (90 % yield) 
upon addition to potassium tetraiodoplatinate8 in water 
(4.64 mmol, 30 mL). Although 3a precipitates from an 
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Figure 1. Structure of 3a-H20-(CH3)2C=0. Selected bond 
distances (A) and angles (deg) are as follows: Pt-I(l), 2.607(3); 
Pt-I(2), 2.604(3); Pt-N(6), 2.05(2); Pt-N(6'), 2.08(2); N(6)-C(6), 
1.51(4); C(6')-N(6'), 1.50(4); C(l)-0(1)-C(2'), 118(2); Pt-N(6)-
C(6), 120(2); Pt-N(6')-C(6')( 117(2). 
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3a, X,,X2 = Iodide 
3b, X,,X2 = Oxalate 
3c, X1,X2 = Malonate 
3d, X,, X2 = Cyclopropylmalonate 

6, R = Electron pair 
7a, FUcis[NH3PtCI2] 
7b, R = cis[NH3Ptmalonate] 

aqueous solution within 30 min, the final one-third of the 
product was recovered by extraction with ethyl acetate. 
Conversion of the key intermediate 3a to the oxalate 3b 
(42% yield), malonate 3c (65% yield), and cyclopropyl-
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Scheme II 

5, X = ris[NH2(NH3RCI2)] -
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Figure 2. Structure of diazidoanhydrosucrose hydrate. Selected 
bond distances (A) and angles (deg) are as follows: C(6)-N(61), 
1.521(17); C(6')-N(61'), 1.488(17); C(2)-0(2), 1.446(13); C(l')-
0(2), 1.447(14); C(l)-0(1), 1.462(14); 0(1)-C(2'), 1.427(12); C(l)-
C(2)-0(2), 109.5(7); C(2)-O(2)-C(10,111.9(9); 0(2)-C(l')-C(2'), 
113.0(8); C(2)-C(l)-0(1), 111.6(8); C(l)-0(1)-C(2'), 111.2(9); 
0(1)-C(2')-C(1'), 110.7(7). 

malonate 3d (26% yield) required preparation of the 
diaquo complex (AgN03 2 equiv, NaNC-3 1 M, in water-
acetone, 8:2 mL), followed by addition of an aqueous 
solution of the disodium salt of the diacid (5 equiv, 10 mL 
of water) at pH 7.6.9 Figure 1 shows the X-ray crystal 
structure of compound 3a.10 The bis(platinum) complex 
5 was prepared in three steps from 6,6'-diazido-6,6'-
dideoxy-l'-0-((triisopropylphenyl)sulfonyl)sucrose(8).11 

Treatment of 8 (7.6 mmol) with sodium ethoxide in ethanol 
(0.75 M, 80 °C, 24 h), followed by neutralization, con­
centration, and countercurrent chromatography (silica gel 
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GF plate, 0.40-cm thickness, 10% methanol in methylene 
chloride) afforded the anhydro diazide 9 in 75 % yield (see 
Figure 2 for X-ray crystal structure).12 Compound 9 was 
quantitatively reduced (10% Pd/C, H2,60 psi, methanol, 
48 h) to ligand 4. Complexation of 4 (3.5 mmol) was 
achieved (in 53% yield) by reaction with tetraethylam-
monium amminetrichloroplatinate13 (2 equiv, 48 h) in the 
presence of triethylamine (2 mL) in methanol (50 mL)6b 

(see Scheme II). The tris(platinum) complex 7a was 
prepared in four steps from 2,3,3',4,4'-penta-0-methyl-
sucrose (10)7b (see Scheme III). Mesylation of 10 was 

Table I. 500-MHz JH NMR and 125-MHz 13C NMR Data (iV^V'-Dimethylfonnamide-d7) for 3a, 5, and 7b 
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Cr 

C^ 
Cy 

c4' c6-(V 
OMe2 

OMe3 

OMe4 

OMer 
OMe3' 
OMe4-

3a° 
UQ 

97.957 
82.493 
82.492 
83.182 
70.853 
50.428 

76.163 

107.985 
87.133 
88.259 
83.629 
51.108 

59.456 
60.408 
60.311 
59.456 
58.942 
56.923 

!H 
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H3 
H< 
H6 

Hea 
Heb 
H r a 

Hn, 

H3< 
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OMe3 

OMe4 

OMer 
OMe3-
OMe4-

5.797 
3.125 
3.575 
2.956 
4.229 
2.805 
3.516 
3.579 
3.654 

3.848 
3.699 
4.206 
3.460 
3.145 
3.503 
3.553 
3.516 
3.380 
3.516 
3.354 

Ci 

c2 c3 c4 c6 C6 

Cr 

C^ 
C* 

c4-C6' 
C6-

5* 
1 8 C 

91.269 
74.989 
67.349 
72.368 
73.018 
48.487 

62.048 

104.044 
78.988 
81.367 
77.047 
51.103 
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H3-
H* 
H* 
He'a 
Hn, 

»H 

5.485 
3.480 
4.144 
3.240 
4.426 
3.293 
2.601 
4.000 
3.461 

3.762 
4.161 
4.169 
3.106 
2.921 

Ci 
C2 

C3 
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Cy 
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OMe3' 
OMe4' 
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MalcCH2 

M a l A C = 0 
M a l B C = 0 
M a l c C = 0 

i s c 

90.679 
81.993 
83.884 
80.251 
69.813 
47.655 

51.398 

104.220 
86.426 
85.475 
80.471 
50.437 

59.795 
60.205 
60.105 
58.554 
58.194 
50.638 

50.437 

50.327 

7bc 

176.658,176.317 
175.577, 
175.176, 

175.016 
174.836 

»H 

Hi 
H2 

H3 

H, 
H6 

He. 
Heb 
Hr. 
Hi* 

H3' 
H,-
He-
He-. 
He-b 
OMe2 

OMe3 

OMe4 

OMe3' 
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MalsH. 
MalsHb 
MalcH. 
MalcHb 

5.648 
3.247 
3.446 
3.233 
3.878 
3.109 
3.031 
3.122 
3.098 

4.197 
3.916 
4.587 
3.012 
2.986 
3.636 
3.568 
3.562 
3.543 
3.489 
3.458 
3.464 
3.383 
3.430 
3.387 
3.432 

0 Proton coupling constants for compound 3a (Hz): V u = 3.14, 3«/2,3 = 9.76, V3|4 = 9.60, V4,6 = 9.10, 3</6,6. = 2.10, 3J6,eb = 7.10, Ve^eb = 
-11.21, Vi'M-b = -10.85, V3',4' = 2.11, V4'^' • 1.90, s « / w , = 6.8, Vy.e'b = 4.10, Ve'̂ e'b = -11.62. * Proton coupling constants for compound 5 
(Hz): V y = 3.79, V^s = 9.24, 3Js.t = 9.72,3«/4j8 = 9.51,3J5,ea - 3.81, 3</6,6b = 7.11, V^eb = -13.12, 2</ra,rb = -12.21,3J3',4' - 6.97, *Jw = 6.71, 
Ve',6'. = 3.61, Ve'.e'b = 6.93, 'W^e'b = -12.89. e Proton coupling constants for compound 7b (Hz): Vi,2 = 3.3, V2|3 = 9.8, 3«/3,4 = 10.2, 3«74,6 = 
9.7, VB*. = 4.4, V5,6b = 7.8, Ve^eb = -11.7, Vru-b = -10.5, V3',4' - 6.9, V4',S' = 6.8,3«/6',e'. = 6.0, Ve'.cb = 3.9, Ve'^cb = -11.4, MalA CH2 V«,b 
= -13.78, MalB CH2 Vfcb = -14.06, Male CH2 V^b = -14.71. 



Communications to the Editor Journal of Medicinal Chemistry, 1993, Vol. 36, No. 12 1793 

achieved in 71% yield (15 mmol of 10, methanesulfonyl 
chloride 15 equiv, in pyridine 0-25 °C, 24 h), and the 
trimesylate 11 was converted to the triazide 12 (sodium 
azide 30 equiv, HMPA, 120 °C, 2 days, 77% yield). 
Reduction of the triazide 12 followed by direct isolation 
of 6 without resorting to amidation proved arduous. 
Phosphorus,14 sulfur,15 and tin reagents16 produced mix­
tures from which the desired triamine 6 was difficult to 
separate. Catalytic hydrogenation17 was accompanied by 
epimerization at C-l. Serendipitously, it was discovered 
that the triamine 6 which was produced upon lithium 
aluminum hydride18 (15 equiv, in dry THF) reduction of 
12 could be quantitatively freed from the reaction mixture 
by concentrating the neutralized filtrate after workup18 

and triturating the wet residue with DMF. Finally the 
tris(platinum) complex 7a was prepared by reaction of 6 
(1 mmol) with tetraethylammonium amminetrichloro-
platinate13'5b (3 equiv, triethylamine 2 mL, methanol 50 
mL, 48 h, 50% yield). Compound 7a could not be 
completely characterized by NMR methods owing to 
excessive overlapping of broadened proton resonances. 
Exchange of the chloride ligands to the tris(malonate) 
chelates 7b enabled unambiguous assignments of the 
carbohydrate portion of this molecule. 

NMR assignments of compounds 3a, 5, and 7b19 (see 
Table I) were accomplished using a combination of 
spectroscopic techniques. The COSY spectrum was used 
to establish the interproton connectivities of the glucopy-
ranoside and fructofuranoside rings.20 Cross peaks es­
tablished the chemical shifts of H-l, H-2, H-3, H-4, H-5, 
H-6a, and H-6b of the pyran and H-3', H-4', H-5', H-6'a, 
and H-6'b of the furan. H-l'a and H-HD proton resonances 
were identified as an isolated AB quartet. Carbon chemical 
shifts were determined through the direct correlations 
observed in the HMQC experiment,21 thereby establishing 
the assignments of the corresponding sugar ring carbon 
atoms. Assignments of the O-methyl groups in the mono-
(3a-d) and tris(platinum) complexes (7a-b) were deter­
mined by (a) the correlations between the sugar ring 
carbons and the methyl protons in the HMBC spectrum22 

via 3JC,H long-range coupling constants and (b) reverse 
correlation of the sugar ring protons to the methyl carbon 
resonances in the latter spectrum. Proton-proton coupling 
constants were determined by measuring the observed 
splitting and then refined by comparing the experimental 
spectrum with a calculated spectrum using initial param­
eters. 

Biological studies on our complexes show that com­
pounds 3a-d are noncytotoxic and possess no anticancer 
activity.23-25 On the other hand, the bis(platinum)complex 
5 is water soluble (>10 mg/mL) and is comparable to 
cisplatin in terms of its cytotoxicity to human KB cells in 
culture (3+, 10 /tg/mL, 11.3 ^M)23 and its anticancer 
activity against both implanted Lewis lung carcinoma in 
mice (T/C > 310% )24-25 and P388 leukemia (T/C > 
291 %).26 However, unlike cisplatin, compound 5 in mice 
showed no severe toxic side effects other than recoverable 
weight loss for the 50-day observation period. Compound 
7a represents the first example of a tris(cis-platinum) 
complex. It is sparingly soluble in water (=1.5 mg/mL) 
and shows marked in vitro cytotoxicity and in vivo 
anticancer activity against human KB cells in culture (3+, 
10 Mg/mL, 7.9 MM) and implanted Lewis lung carcinoma 
(T/C > 355%), respectively.23"25 Our immediate goals 
hereafter are (a) to complete a preclinical picture of the 

efficacies of these new complexes against a wide range of 
solid tumors, (b) to generate more water-soluble multi-
(platinum) complexes from sucrose and other mono-, di-, 
and oligosaccharides, and (c) to understand the mode with 
which these complexes can bind DNA by isolating and 
characterizing their DNA adducts. 
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